Rapid and widespread suppression of self-renewal by microRNA-203 during epidermal differentiation.

نویسندگان

  • Sarah J Jackson
  • Zhaojie Zhang
  • Dejiang Feng
  • Meaghan Flagg
  • Evan O'Loughlin
  • Dongmei Wang
  • Nicole Stokes
  • Elaine Fuchs
  • Rui Yi
چکیده

MicroRNAs (miRNAs) play important roles in differentiation of stem cells. However, the precise dynamics of miRNA induction during stem cell differentiation have not been visualized and molecular mechanisms through which miRNAs execute their function remain unclear. Using high-resolution in situ hybridization together with cell lineage and proliferation markers in mouse skin, we show that miR-203 is transcriptionally activated in the differentiating daughter cells upon the asymmetric cell division of interfollicular progenitor cells. Once induced, miR-203 rapidly promotes the cell cycle exit within 6 hours and abolishes self-renewal of the progenitor cells. With an inducible mouse model, we identify numerous miR-203 in vivo targets that are highly enriched in regulation of cell cycle and cell division, as well as in response to DNA damage. Importantly, co-suppression of individual targets, including p63, Skp2 and Msi2 by miR-203 is required for its function of promoting the cell cycle exit and inhibiting the long-term proliferation. Together, our findings reveal the rapid and widespread impact of miR-203 on the self-renewal program and provide mechanistic insights into the potent role of miR-203 during the epidermal differentiation. These results should also contribute to understanding the role of miR-203 in the development of skin cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isolation, Induction of Neural and Glial Differentiation and Evaluating the Expression of Five Self Renewal Genes in Adult Mouse Neural Stem Cells

Purpose: Isolation, induction of neural and glial differentiation and evaluating the expression of Nucleostemin, ZFX, Hoxb-4, Sox-9 & Bmi-1 self renewal genes in adult mouse neural stem cells. Materials and Methods: Breifly, for isolation of neural stem cells, frontal part of adult mouse brain was minced in PBS and digested by enzyme solution, containing hyaloronidase and trypsin. Isolated cel...

متن کامل

Deregulation of Stemness-Related Genes in Endometriotic Mesenchymal Stem Cells: Further Evidence for Self-Renewal/Differentiation Imbalance

Background: Any irregularities in self-renewal/differentiation balance in endometriotic MSCs can change their fate and function, resulting in endometriosis development. This study aimed to evaluate the expression of OCT4 transcripts (OCT4A, OCT4B, and OCT4B1), SOX2, and NANOG in endometriotic MSCs to show their aberrant expression and to support self-renewal/differentiation imbalance in these c...

متن کامل

MicroRNA-203 As a Stemness Inhibitor of Glioblastoma Stem Cells

Glioblastoma stem cells (GBM-SCs) are believed to be a subpopulation within all glioblastoma (GBM) cells that are in large part responsible for tumor growth and the high grade of therapeutic resistance that is so characteristic of GBM. MicroRNAs (miR) have been implicated in regulating the expression of oncogenes and tumor suppressor genes in cancer stem cells, including GBM-SCs, and they are a...

متن کامل

سلول‌های بنیادی قلبی در یک نگاه: مقاله مروری

It was assumed that the loss of cardiomyocytes is irreversible. The main goal is to develop widely available and clinically applicable treatments for heart diseases. The several studies have showed that the use of stem cells can improve complicacies such as cardiovascular diseases. Stem cells have a potential benefit of the self-renewal and cell differentiation into the cell types that can play...

متن کامل

The Role of p16INK4a Pathway in Human Epidermal Stem Cell Self-Renewal, Aging and Cancer

The epidermis is a self-renewing tissue. The balance between proliferation and differentiation processes is tightly regulated to ensure the maintenance of the stem cell (SC) population in the epidermis during life. Aging and cancer may be considered related endpoints of accumulating damages within epidermal self-renewing compartment. p16INK4a is a potent inhibitor of the G1/S-phase transition o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 140 9  شماره 

صفحات  -

تاریخ انتشار 2013